If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2n^2-30n+800=0
a = -2; b = -30; c = +800;
Δ = b2-4ac
Δ = -302-4·(-2)·800
Δ = 7300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7300}=\sqrt{100*73}=\sqrt{100}*\sqrt{73}=10\sqrt{73}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10\sqrt{73}}{2*-2}=\frac{30-10\sqrt{73}}{-4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10\sqrt{73}}{2*-2}=\frac{30+10\sqrt{73}}{-4} $
| 7x/3+1=22 | | 2(-x+5)=3x-5 | | (2x+15)+(2x-35)=180° | | 0.4(3^n-1)=35000 | | x°4-4x°3+14x°2-20x+25=0 | | 6x+4-8=4x+10 | | 9x+43=95-4x,x= | | 8p-2=18 | | Y=X^2-50x-250 | | X+3/x-3+6(x+3/x-3+6(x-3/x+3)=5 | | x^2-3*x+1^2=0 | | x^2-3*(-0,49x)+(-0,49)^2=0 | | x^2-3*(-0,04x)+(-0,04)^2=0 | | x^2-3*(-4x)+(-4)^2=0 | | x^2-3*0,0529x+0,0529^2=0 | | x^2-3*0,2x+0,2^2=0 | | 21x+12x=66 | | 2x³-6x²-45x=0 | | 2x+4=5,x=1 | | x^2-x-1808=0 | | -8+2t=1 | | 5x+2x-4x=50 | | -20x+20=80 | | 0.2x+0.3=0.1+0.5 | | 3.3^(2x+1)-103^x+1=0 | | 2y2-3y-9=0 | | 3p+5/4p-3=4/9. | | 200x-200x+10x+2x²=2000 | | 200x=200x-2x²+1000-10x | | 200x-200x+10x+2x²=1000 | | 4x^2*122x=135 | | 4x^2*12x=135 |